老课程比较关注运用勾股定理及逆定理的相关运算,即已知直角三角形两边长求第三边和判定一个三角形是否是直角三角形。新课程则强调了勾股定理在现实生活中起着重要作用,是数形结合的典范。
二、教学中应注意的问题及建议
新课程创设实际情景,让学生感受到现实生活中勾股定理的应用,从实际情景抽象出勾股定理。因此,建议为学生创设丰富的实际情景,使学生经历知识发生的过程。在证明勾股定理逆定理中,可将一根绳子打上13个结,将绳子分成12等分,让三位同学上讲台,一位同学握住第1和第13个结,一位握住第4个结,一位握第8个结,创设此情景,让学生自己思考、分析,从而判断此三角形为直角三角形,最后归纳出勾股定理逆定理。
2.重视数形结合
新教材里,勾股定理的探索和验证过程中,数形结合有较多体现,渗透了代数运算与几何图形之间的关系。因此,建议在教学中应注意渗透这种思想,鼓励学生从代数表示联想到有关的几何图形,由几何图形联想到有关的代数表示,有助于学生认识数学的内在联系。例如:在探索勾股定理过程中,应引导学生由正方形的面积想到a2、b2、c2,而在勾股定理的验证过程中,教师又应引导学生由数a2、b2、c2想到正方形的面积。
3.重视实际应用
对于勾股定理,新教材不仅要求能从实际情景中抽象出勾股定理,而且要能将它用于实际问题中,从而体现出数学的应用价值。因此,建议在教学中充分利用教科书中的素材让学生体会这种应用,如古埃及人利用结绳的方法做出直角,利用勾股定理求出蚂蚁的最短路线等。
4.重视学生经历探索勾股定理的过程
新教材中安排了探索勾股定理、验证勾股定理、探索直角三角形的条件等活动。因此,建议在教学中不要直接给出结论,要鼓励学生,通过观察、实践、推理、交流等获得结论,发展空间观念和推理能力。例如教科书设计了在方格纸上通过计算面积的方法探索勾股定理的活动,教师应引导学生通过由特殊到一般的探索得到结论。
5.重视自主探究与合作交流
新教材自始至终为学生提供自主探索、合作交流、积极思考的空间和机会,课堂上引导学生主动参与探究或学习,激发学生学习数学的兴趣,调动学生的积极思维,督促每个学生都在这个过程中积极参与,从而培养探索与创新的精神。
6.重视爱国主义的渗透
教材介绍了我国古人赵爽的证法,介绍了赵爽弦图,表现了中国古人对数学的钻研精神和聪明才智,是中国人的骄傲,通过向学生介绍我国古代勾股定理研究方面的成就,激发学生热爱祖国悠久文化的思想感情,培养他们的民族自豪感,同时教育学生发奋图强、努力学习,担起建设伟大祖国的重任。
(作者单位:贵州省安顺市实验学校)
发表评论