当前位置:网站首页 > 野史 > 如何证明四点共圆(对角互补如何证明四点共圆)

如何证明四点共圆(对角互补如何证明四点共圆)

如何证明四点共圆(对角互补如何证明四点共圆)作为和代数并列为初中数学两大知识点的几何,常常因为图形变化多端,方法多种多样而被称为数学中的变形金刚。话虽如此,变形金刚也不是无敌的,最终仍旧是人类的智慧更胜一筹。如何证明四点共圆(对角互补如何证明四点共圆)几何证明题入门难,证明题难做,已经成为许多同学的共识…尤其是对于一个没有空间思维的人来说……今天康康

作为和代数并列为初中数学两大知识点的几何,常常因为图形变化多端,方法多种多样而被称为数学中的变形金刚。

话虽如此,变形金刚也不是无敌的,最终仍旧是人类的智慧更胜一筹。

如何证明四点共圆(对角互补如何证明四点共圆)

如何证明四点共圆(对角互补如何证明四点共圆)

几何证明题入门难,证明题难做,已经成为许多同学的共识…

尤其是对于一个没有空间思维的人来说……

今天康康跟大家分享的是一位不愿透露姓名的(爱智康初数组李老师)总结的几何证明题思路及常用的原理,同学们一定要好好看并且收藏起来!

很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。

对于证明题,有三种思考方式:

1.正向思维。

对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

2.逆向思维。

顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。

同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。

例如:

3.正逆结合。

对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。

在做几何证明题的时候,书写很重要,由于几何证明题中,涉及到的公式较多,所以,好的写会让你的卷面看起来很工整,而不好的书写,会让卷子看起来很混乱,并且很容易造成阅卷老师的反感,还会发生找不到答案的情况,所以,为了能够多拿分,书写工整,是非常必要的~~

?正确的书写示范:

同学们可以模仿这种书写方式,保持解题前后步骤左对齐,等号对齐,会让整个解题步骤看起来更加易懂,

?错误的书写示范:

而像这种书写方式,即使最后的答案是正确的,但是看起来会非常的混乱,整体缺少美感,会让阅卷老师觉得看起来非常头疼,人家自然也就不愿意花费太多的时间去找你的答案。

要掌握上述所说的初中数学几何证明题技巧,熟练运用和记忆如下原理是关键!

下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题:

1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等。

1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。

6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

10.在圆中平分弦(或弧)的直径垂直于弦。

11.利用半圆上的圆周角是直角。

1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。

5.梯形的中位线平行于两底。

6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

1.作两条线段的和,证明与第三条线段相等。

2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。

3.延长短线段为其二倍,再证明它与较长的线段相等。

4.取长线段的中点,再证其一半等于短线段。

5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。

1.与证明线段的和、差、倍、分思路相同。

2.利用角平分线的定义。

3.三角形的一个外角等于和它不相邻的两个内角的和。

1.同一三角形中,大角对大边。

2.垂线段最短。

3.三角形两边之和大于第三边,两边之差小于第三边。

4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。

5.同圆或等圆中,弧大弦大,弦心距小。

6.全量大于它的任何一部分。

1.同一三角形中,大边对大角。

2.三角形的外角大于和它不相邻的任一内角。

3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。

4.同圆或等圆中,弧大则圆周角、圆心角大。

5.全量大于它的任何一部分。

1.利用相似三角形对应线段成比例。

2.利用内外角平分线定理。

3.平行线截线段成比例。

4.直角三角形中的比例中项定理即射影定理。

5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。

6.利用比利式或等积式化得。

1.对角互补的四边形的顶点共圆。

2.外角等于内对角的四边形内接于圆。

3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。

4.同斜边的直角三角形的顶点共圆。

5.到顶点距离相等的各点共圆

几何证明题型作为一个“中考必考、大考必考、小考常考、选择题考、填空题考、解答题考、压轴题也考、知识点多、综合度高、灵活性强的知识点”,如果想数学拿高分,就一定要重点掌握并攻克这类题。

上一篇: 公子宋(公子宋染指于鼎)
下一篇: 黎簇和吴邪的关系(黎簇和吴邪的关系好吗)

为您推荐

发表评论