1基本思想不同
探索性因子分析主要是为了找出影响观测变量的因子个数,以及各个因子和各个观测变量之间的相关程度,以试图揭示一套相对比较大的变量的内在结构。研究者的假定是每个指标变量都与某个因子匹配,而且只能通过因子载荷凭知觉推断数据的因子结构。
验证性因子分析的主要目的是决定事前定义因子的模型拟合实际数据的能力,以试图检验观测变量的因子个数和因子载荷是否与基于预先建立的理论的预期一致。验证性因子分析的主要目的是决定事前定义因子的模型拟合实际数据的能力,以试图检验观测变量的因子个数和因子载荷是否与基于预先建立的理论的预期一致。其先验假设是每个因子都与一个具体的指示变量子集对应,并且至少要求预先假设模型中因子的数目,但有时也预期哪些变量依赖哪个因子。
2应用前提不同
在进行探索性因子分析之前,不必知道要用几个因子,以及各因子和观测变量之间的关系。在进行探索性因子分析时,由于没有先验理论,只能通过因子载荷凭知觉推断数据的因子结构。上述数学模型中的公共因子数m在分析前并未确定,而是在分析过程中视中间结果而决定,各个公共因子Ni统一地规定为均影响每个观测变量xi。探索性因子分析更适合于在没有理论支持的情况下对数据的试探性分析。
验证性因子分析则是基于预先建立的理论,要求事先假设因子结构,其先验假设是每个因子都与一个具体的指示变量子集对应,以检验这种结构是否与观测数据一致。也就是在上述数学模型中,首先要根据先验信息判定公共因子数m,同时还要根据实际情况将模型中某些参数设定为某一定值。这样,验证性因子分析也就充分利用了先验信息,在已知因子的情况下检验所搜集的数据资料是否按事先预定的结构方式产生作用。
3理论假设不同
探索性因子分析的假设主要包括:①所有的公共因子都相关(或都不相关);②所有的公共因子都直接影响所有的观测变量;③ 特殊(唯一性)因子之间相互独立;④ 所有观测变量只受一个特殊(唯一性)因子的影响;⑤ 公共因子与特殊因子(唯一性)相互独立。验证性因子分析克服了探索性因子分析假设条件约束太强的缺陷,其假设主要包括:① 公共因子之间可以相关,也可以无关;② 观测变量可以只受一个或几个公共因子的影响,而不必受所有公共因子的影响;③特殊因子之间可以相关,还可以出现不存在误差因素的观测变量;④ 公共因子与特殊因子之间相互独立。
4主要应用范围不同
探索性因子分析主要应用于三个方面:①寻求基本结构,解决多元统计分析中的变量间强相关问题;② 数据化简;③发展测量量表。验证性因子分析允许研究者将观察变量依据理论或先前假设构成测量模式,然后评价此因子结构和该理论界定的样本资料间符合的程度。因此,主要应用于以下三个方面:① 验证量表的维度或面向性(dimensionality),或者称因子结构,决定最有效因子结构;② 验证因子的阶层关系;③ 评估量表的信度和效度。
学堂君的历史合辑:
欢迎添加
发表评论