宇宙那么大,人类的活动范围却非常小,迄今为止,人类去过最远的地方就是月球,而月球与地球的平均距离只有38万公里。当然了,人类还发射了各式各样的探测器,如果将它们也算上,那人类的活动范围就要大很多了。
即使用光速前进,也需要20多个小时才能跑完228亿公里,对于人类而言,这段距离可以说是非常遥远的。令人称奇的是,远在228亿公里外的旅行者1号,却依然与地球保持着联系,所以问题就来了,它是怎么把信号传回地球的呢?
旅行者号探测器(美国旅行者号探测器)
旅行者1号的能量来自于自身携带的3块钚放射性同位素温差发电机(即利用钚放射性同位素的衰变获取电能的“核电池”),其总功率为420瓦。
为了保证无线电信号传输的成功率,旅行者1号的发射频率选择了无线电干扰极小的8GHz频段,并配备了一个直径达3.7米的“高增益天线”,它可以将信号集中向某一个方向发射,从而大幅增加信号传输的距离,而这也是人类在当时制造出的口径最大的反射面天线。
虽然旅行者1号采用了当时最先进的无线电通信设备,但随着距离的增加,无线电信号的强度也会指数级地下降,时至今日,当旅行者1号发出的信号到达地球时,其功率已经低至10^-22瓦(即一百万亿亿分之一瓦)。
“想要接收到非常微弱的信号,就必须要有直径足够大的天线,如果一个不够的话,我们还可以建造很多个组合起来使用”,基于这种思路,NASA于20世纪60年代就开始建造深空网络(DeepSpaceNetwork,简称DSN)。
目前该系统分为三个站点,分别为“戈尔德斯通深空站”(GoldstoneView)、“马德里深空站”(MadridView)以及“堪培拉深空站”(CanberraView)。
近几十年以来,科学家一直在使用新技术来提升深空网络的远距离通信能力,比如说用全息对齐技术来提高聚焦信号的准确度、用新材料来增大天线的直径、用更精密的面板来提高精度,又或者直接用更先进的天线来替换老旧的天线。
另一方面来讲,在飞行了44年之后,旅行者1号的“核电池”已经支撑不了多久了,科学家估计,旅行者1号的能量将在2025年消耗殆尽,在此之后,它就会彻底与地球断开联系,从此在茫茫的宇宙空间中孤独地漂泊。
好了,今天我们就先讲到这里,欢迎大家关注我们,我们下次再见。
(本文部分图片来自网络,如有侵权请与作者联系删除)
发表评论