当前位置:网站首页 > 探索 > 勾股定理证明方法通用六篇

勾股定理证明方法通用六篇

勾股定理证明方法通用六篇利用三个正方形面积之间的关系,从而得到直角三角形三边之间的关系. 基于完全可以接受的朴素观念,既直观又简单,任何人都看得懂. 方法2:在中国古代的数学家中

勾股定理证明方法范文1

勾股定理是几何学中的明珠,充满魅力,于是千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通百姓,也有尊贵的政要权贵,甚至有国家总统. 也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证. 1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法. 实际上还不止这些,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法. 这是任何定理无法比拟的. 下文选取部分较为精彩的证明方法,供同学们参考.

方法1:课本方法:直接在直角三角形三边上画正方形,如图.

利用三个正方形面积之间的关系,从而得到直角三角形三边之间的关系. 基于完全可以接受的朴素观念,既直观又简单,任何人都看得懂.

方法2:在中国古代的数学家中,最早对勾股定理进行证明的是三国时期吴国的数学家赵爽. 赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明.

在这幅“勾股圆方图”中,以弦为边长得到的正方形ABDE是由4个相同的直角三角形再加上中间的那个小正方形组成的. 每个直角三角形的面积为■;中间的小正方形边长为b-a,则面积为(b-a)2. 于是便可得如下的式子:4×■+(b-a)2=c2,化简后便可得:a2+b2=c2. 赵爽的这个证明可谓别具匠心,极富创新意识. 他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一,代数和几何紧密结合、互不可分的独特风格树立了一个典范.

方法3:美国第十七任总统J·A·加菲尔德(1831~1888)在学生时代对初等数学就具有强烈的兴趣和高超的才能,在1876年(当时他是众议院议员,5年后当选为美国总统),给出了勾股定理一个漂亮的证明,证明的思路是利用等积思想, 如下图.

S梯形ABCD=■(a+b)2=■. ①

又S梯形ABCD=SAED+SEBC+SCED=■=■. ②

比较以上两式,便得a2+b2=c2.

这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁.

从勾股定理还推广出很多新的定理和应用,有兴趣的同学可以尝试证明. 如:

欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和.”

从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和.”

勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和.

勾股定理证明方法范文2

1本章内容概述

直角三角形是一种极常见而特殊的三角形,它有许多性质,如两个锐角互余,30°的角所对的直角边等于斜边的一半.本章所研究的勾股定理,是直角三角形的非常重要的性质,有极其广泛的应用.平角的一半就是直角,空间中一条水平方向的直线和另一条铅垂方向的相交直线也相交成一个直角,直角是生产和生活中最常见的特殊角.勾股定理指出了直角三角形三边之间的数量关系,这就搭建起了几何图形和数量关系之间的一座桥梁,从而发挥了重要的作用.勾股定理不仅在平面几何中是重要的定理,而且在三角学、解析几何学、微积分学中都是理论的基础,定理对现代数学的发展也产生了重要而深远的影响.没有勾股定理,就难以建立起整个数学的大厦.所以,勾股定理不仅被认为是平面几何中最重要的定理之一,也被认为是数学中最重要的定理之一.

本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理及其应用.

在第一节中,教科书安排了对勾股定理的观察、计算、猜想、证明及简单应用的过程.教科书首先简略讲述了毕达哥拉斯从观察地面图案的面积关系发现勾股定理的传说故事,并让学生也去观察同样的图案,以发现等腰直角三角形这种特殊直角三角形下的特殊面积关系.在进一步的“探究”中又让学生对某些直角三角形进行计算,计算以直角三角形两直角边为边长的小正方形的面积和以斜边为边长的正方形的面积,发现以两直角边为边长的小正方形的面积的和等于以斜边为边长的正方形的面积.然后对更一般的结论提出了猜想.

历史上对勾股定理证明的研究很多,得到了很多证明方法.教科书正文中介绍了公元3世纪三国时期中国数学家赵爽的证明方法.这是一种面积证法,依据是图形在经过适当切割后再另拼接成一个新图形,切割拼接前后图形的各部分的面积之和不变,即利用面积不变的关系和对图形面积的不同算法推出图形的性质.在教科书中,图17.1-6(1)中的图形经过切割拼接后得到图17.1-6(3)中的图形,证明了勾股定理.

根据勾股定理,已知两条直角边的长a,b,就可以求出斜边c的长.根据勾股定理还可以得到a2=c2-b2,b2=c2-a2,由此可知,已知斜边和一条直角边的长,就可以求出另一条直角边的长.也就是说,在直角三角形中,已知两条边的长,就可以求出第三条边的长.教科书相应安排了两个例题和一个“探究”栏目,让学生学习运用勾股定理解决问题,并运用定理证明了斜边和一条直角边对应相等的两个直角三角形全等.

在第二节中,教科书首先让学生画出一些两边的平方和等于第三边的平方的三角形,可以发现画出的三角形都是直角三角形,从而作出猜想:如果三角形的三边满足两边的平方和等于第三边的平方,那么这个三角形是直角三角形.教科书借助勾股定理和判定全等三角形的定理(SSS)证明了这个猜想,得到了勾股定理的逆定理.勾股定理的逆定理是判定一个三角形是直角三角形的一种重要依据.教科书安排了两个例题,让学生学会运用这个定理.本节结合勾股定理的逆定理的内容的展开,穿插介绍了逆命题、逆定理的概念,并举例说明原命题成立其逆命题不一定成立.为巩固这些内容,相应配备了一些练习和习题.

2编写时考虑的几个问题

2.1让学生经历勾股定理及其逆定理的探索过程

勾股定理及其逆定理都是初等数学中的重要定理,同时,这两个定理也都是多数初中学生在教师的精心引导下通过探索能够发现并证明的定理,教学中要重视这两个定理的教学,在教学过程中要注意引导学生通过探索去发现图形的性质,提出一般的猜想,并获得两个定理的证明.

教科书对勾股定理的教学,设计了一个从特殊到一般的探索、发现和证明的过程.先是很特殊的等腰直角三角形,再到一些特殊的直角三角形,再到一般直角三角形的结论证明的赵爽证法的引入.这是一个典型的探索和证明的过程.类似地,对勾股定理的逆定理,教科书也设计了从特殊结论到一般结论的探索和证明的完整过程.

这样安排教学,有利于学生认识结论研究的必要性,培养学生对结论的探索兴趣和热情,培养学生发现、提出、分析和解决问题的能力和严密审慎的思考习惯.

2.2通过介绍我国古代研究勾股定理的成就培养民族自豪感

我国古代对数学有许多杰出的研究成果,许多成就为世界所瞩目和高度评价,在数学教学中应结合教学内容,适当介绍我国古代数学成就,培养学生爱国热情和民族自豪感.

我国古代对勾股定理的研究就是一个突出的例子.根据成书年代不晚于公元前2世纪西汉时期的《周髀算经》进行推算,有可能在公元前21世纪大禹治水时人们就会应用“勾三股四弦五”的特殊结论,公元前6、7世纪时人们还知道了勾股定理的一般结论并能灵活运用结论解决许多实际测量问题.约公元3世纪三国时期赵爽为《周髀算经》作注写《勾股圆方图注》,用“弦图”对勾股定理给出了一般的证明,这是我国对勾股定理一般结论的最早的证明.我国古代不仅较早独立地发现了勾股定理有关“勾三股四弦五”的一些特殊结论,而且也比较早使用了巧妙的方法独立证明了勾股定理一般结论,在勾股定理的应用方面也有许多深入的研究并达到熟练的程度.从《周髀算经》对勾股定理的多方面的论述,此书所记录的在公元前6、7世纪时在我国人们已经能够熟练且自信地把勾股定理应用到任意边长的直角三角形的事实,可以推测在比《周髀算经》成书早得多的时候,我国对勾股定理不仅知其然而且知其所以然,只是缺少文献明确记载对定理的论证.这些,都说明我国古代劳动人民的卓越聪明才智,也是我国对世界数学的重要贡献,是值得我们自豪的.

本章教科书结合教学内容介绍了我国古代对勾股定理的有关研究成果.在引言中介绍了现存的我国古代的数学著作中最早的著作《周髀算经》的记载“如果勾是三、股是四、那么弦是五”.勾股定理的证法很多,教科书为了弘扬我国古代数学成就,介绍了赵爽的证法.首先介绍赵爽“弦图”,然后介绍赵爽利用弦图证明命题1的基本思路.这些内容表现了我国古代劳动人民对数学的钻研精神和聪明才智,它是我国古代数学的骄傲.正因为此,赵爽“弦图”被选为2002年在北京召开的世界数学家大会的会徽.教科书还在习题中安排了我国古代数学著作《九章算术》中的问题,展现我国古代在勾股定理应用研究方面的成果.

课本习题是一种重要的教学资源。在总复习教学中,通过探索课本典型习题的知识生长点、能力发展点、思想方法蕴涵点,挖掘课本典型习题的潜在教学价值,有利于激发学习兴趣,提高复习教学效率;通过反思、拓展、应用,完成习题教学的第二次飞跃。培养学生探究质疑精神,提高创新意识和实践能力。下面就一课本习题教学进行的再认识和再设计问题予以探究.

题目现行华师大版9年级《数学》上第24章《图形的相似》复习题C组第20题:

(1)已知,如图1,MN是ABCD外的一条直线,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′为垂足,求证:AA′+CC′=BB′+DD′.

(2)若直线MN向上移动,使点C在直线一侧,A、B、D三点在直线另一侧(如图2),则垂线段AA′、BB′、CC′、DD′之间存在什么关系?先对结论进行猜想,然后加以证明.

图1图21质疑证法

华师大版配套教师用书提示:记O为ABCD两条对角线的交点,过O作OO′MN,垂足为O′。

(1)由梯形中位线定理,易证所需结论.

(2)由梯形中位线定理,可得BB′+DD′=2OO′;易可证AA′-CC′=2OO′,因而AA′=BB′+CC′+DD′.

根据提示,运用梯形中位线定理是关键,证明如下:

图3(1)证一:连结AC、BD交于O,过O作OO′MN,垂足为O′.

因为BO=OD,BB′∥OO′∥DD′,所以B′O′=O′D′。所以BB′+DD′=2OO′。同理AA′+CC′=2OO′。所以AA′+CC′=BB′+DD′.

证二:如图3,分别连结AC、BD交于P,过P作PHMN于H,连结C′P,并延长交A′A的延长线于W。因为BP=PD,BB′∥PH∥DD′,则B′H=D′H,所以PH是梯形BB′D′D的中位线。所以BB′+DD′=2PH.

又PCC′≌PAW,所以PC′=PW,CC′=AW,PH是WA′C′的中位线,所以WA′=2PH,所以AA′+CC′=2PH,所以AA′+CC′=BB′+DD′.

(2)猜想:AA′-CC′=BB′+DD′。证明(转化法):如图2,在ABCD外,另作M1N1∥MN,分别延长AA′、BB′、CC′、DD′交M1N1于A1、B1、C1、D1。由(1)证得:AA1+CC1=BB1+DD1。所以AA′+A′A1+C′C1-CC′=BB′+B′B1+DD′+D′D1,由于A′A1=C′C1=B′B1=D′D1,所以AA′-CC′=BB′+DD′.

问题分析对(1)的两种证明,关键性依据是“过梯形一腰的中点且平行于两底的直线必平分另一腰”,然后利用中位线性质获证,证明看似顺畅简洁,但现行华师大版数学教材中始终没有这样的学习内容,造成推理无依据,难消学生心中的疑虑。证法二中用到的结论“过三角形一边的中点且平行于另一边的直线必平分第三边”可以在教材P67开头部分找到依据.

这些结论如果补证,会增加学生负担;如果直接告诉这个结论,会增加学生理解难度。其实,还有适合学生的其他证法.

图4改进证法(1)如图4,分别过C、D作CHBB′于H,DPAA′于P。因为BB′∥AA′,AD∥BC,所以∠HBC+∠ABC+∠BAP=∠ABC+∠BAP+∠PAD=180°,所以∠HBC=∠PAD。又AD=BC,∠BHC=∠APD=90°,所以BHC≌APD。所以BH=AP。即BB′-HB′=AA′-PA′,由HB′=CC′,PA′=DD′,可得AA′+CC′=BB′+DD′.

(2)可仿(1)证明.

2质疑猜想

问题(2),在不给学生任何提示的前提下,学生的思考几乎呈散放、无序的状态,又测量因误差,容易导致误猜,实践证明学生很难获得有效的猜想。中科院院士张景中认为,一个题目,光想不动手,往往不得其门而入,动手做,常会有启发,代数问题,把字母代成数试一试,几何问题,多画几个图看一看,这比你冥思苦想效果好得多,学生通过数学实验,动手算一算、画一画、量一量,手脑并用,获得直接的感性认识,能最大程度地发挥其主观能动性,有利于右脑的开发,并能由此引发奇思妙想,产生大胆的猜想和创新。正所谓“直觉的产生要以逻辑分析为‘前奏曲’”。由此可见,猜想不是凭空乱想。教学中要教给学生猜想的方法和猜想的途径。猜想的方法主要有:归纳、类比、合情推理。猜想的途径主要是:观察、实验、探索。教学改进设计如下:

(1)实践操作,感知确认。试一试,测量这些线段,通过计算,它们有什么的关系呢?有人测得BB′=0。2cm,AA′=1。1cm,CC′=0。5cm,DD′=0。3cm,于是猜想:AA′+DD′=2(BB′+CC′)。还有BB′=0。25cm,AA′=1。1cm,CC′=0。55cm,DD′=0。3cm,于是猜想:AA′=BB′+CC′+DD′。谁的猜想更合理呢?再画一个图形试一试,发现:AA′=BB′+CC′+DD′更合理.

(2)通过引入辅助元素,转化为熟悉的问题或已经解决了的问题,通过推理获得猜想.

3变式探究

变式1:如果再作如下移动又如何呢?若直线MN向上移动,使点C、D在直线一侧,A、B点在直线另一侧(如图5),则垂线段AA′、BB′、CC′、DD′之间存在什么关系?先对结论进行猜想,然后加以证明.

勾股定理证明方法范文3

中国最早的一部数学著作――《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话,周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地的数据呢?”商高回答说:“数的产生来源于对方和圆这些形体的认识,其中有一条原理:当直角三角形‘矩’的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5,这个原理是大禹在治水的时候就总结出来了的啊.”所以这个定理在中国又称为“商高定理”.从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要的数学原理了.稍懂平面几何的读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方.如图所示:

我们用勾a和股b分别表示直角三角形的两条直角边,用弦c来表示斜边,则可得:

勾2+股2=弦2

亦即:a2+b2=c2

相传古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现了勾股定理,所以在西方亦称该定理为毕达哥拉斯定理,据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺,故西方亦称勾股定理为“百牛定理”.如图为毕达哥拉斯树:

其实,我国古代人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多,如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年.其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52),所以现在数学界把它称为勾股定理,应该是非常恰当的.

在稍后一点的《九章算术》一书中,勾股定理得到了更加规范的一般性表述,书中的《勾股章》说:“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦.”把这段话列成算式,即为:

弦=■

亦即:c=■

中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的是三国时期吴国的数学家赵爽,赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到的正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的,每个直角三角形的面积为■ab,中间的小正方形边长为b―a,面积为(b―a)2:

于是便可得如下的式子:

4×■ab+(b―a)2=c2

化简后便可得:a2+b2=c2

亦即:c=■

勾股定理证明方法范文4

对角线长度=√(长+宽),“勾股定理”是一个基本的几何定理,在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理。三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,又给出了另外一个证明。

直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。赵爽在注解《周髀算经》中给出了“赵爽弦图”证明了勾股定理的准确性,勾股数组程a²+b²=c²的正整数组(a,b,c)。(3,4,5)就是勾股数。即在任何一个平面直角三角形中的两直角边的平方之和一定等于斜边的平方。

上一篇: 登月极烧钱
下一篇: 探索短视频,争做五有新人才

为您推荐

发表评论