当前位置:网站首页 > 探索 > 罗亮:人工智能驱动思想政治教育创新的时代价值与实践策略

罗亮:人工智能驱动思想政治教育创新的时代价值与实践策略

罗亮:人工智能驱动思想政治教育创新的时代价值与实践策略人工智能是引领新一轮科技革命和产业变革的重要驱动力,正深刻改变着人类的生存境遇。习近平总书记指出,要“高度重视人工智能对教育的深刻影响,积极推动人工智能和教育深度融合

人工智能是引领新一轮科技革命和产业变革的重要驱动力,正深刻改变着人类的生存境遇。习近平总书记指出,要“高度重视人工智能对教育的深刻影响,积极推动人工智能和教育深度融合,促进教育变革创新”。[1]思想政治教育也要始终瞄准人工智能驱动下社会的变革,致力于培养能与机器人竞争、协作的时代新人。人工智能既是思想政治教育创新的环境约束变量,也是创新进程的驱动性因素。人工智能对思想政治教育创新具有重要的时代价值,也使思想政治教育面临着巨大挑战。

一、人工智能驱动下思想政治教育创新的时代价值

人工智能的发展为思想政治教育带来巨大机遇与挑战。人工智能驱动思想政治教育创新是思想政治教育因事而化、因时而进、因势而新的必然要求,具有重要的时代价值。

1.实现信息技术与思想政治教育融合发展

人工智能加速发展,呈现出深度学习、跨界融合、人机协同、群智开放、自主操控等新特征。[2]人工智能是信息技术的最新前沿,人工智能驱动思想政治教育创新能够推动信息技术与思想政治教育融合发展,主要表现为两方面;一方面,在思想政治教育中开启人机协同。人工智能驱动下,人类生活在真实世界和虚拟世界的自然切换与融合中。思想政治教育重在引导教育对象妥善处理人与人、人与社会、人与自我的关系。随着人工智能的广泛应用,机器成为社会生活的重要组成部分,“人机共处、人机共生、人机共治"将成为可能。思想政治教育要顺应这种趋势,以促进人的全面发展为导向,建立人机协同的思想政治教育体系,将人机协同融入教育教学、决策管理、评估等各个方面。另一方面,牢牢占据融合发展中人的主体地位。人工智能不仅是工具,还逐渐成为一种思维与生活方式。无论是当前的弱人工智能阶段,还是未来的强人工智能阶段,都应该是辅助融合而非替代思想政治教育主体地位。人工智能技术强大的数据集成、算力算法容易使人产生路径依赖。思想政治教育主体不仅是技术产品的使用者,还要彰显人的主体地位,成为数据集成、算力算法的掌控者。

2.提升思想政治教育亲和力

人工智能驱动思想政治教育创新,将推动思想政治教育的亲和力进一步提升。一是教育主体亲和力提升。人工智能的应用,可以替代教育主体简单重复、琐屑繁杂的工作内容,如数据统计、信息传达、资料搜集等,解放教育主体,提升其工作效率,让教育主体有更充足的时间和精力来从事面对面的深度交流和创造力的激发等工作。此外,依托人工智能,教育主体对受教育者知识层次、能力水平、情感表现有更深刻精准的洞察,从而开展更具亲和力的教育。二是教育过程亲和力提升。教育过程中,教师“知识权威”的角色终结,人工智能帮助教师成为学生的合作者、支持者、帮助者、引导者,全面支持学生个性化、合作化学习。利用云技术等链接、汇聚、叠加更多专家智慧,创造性运用多种教学资源、方法工具,呈现“最强教育大脑”,突破传统班级授课制的局限,实现师生深度互动。三是教育内容亲和力提升。大数据的收集、检索、储存等技术的进步,使教育内容充盈丰沛,但也造成了受教育者信息检索、知识运用的巨大障碍。通过人工智能算法,实现教育内容自动供给、精准分发和智能推荐,更好地为每一位学习者推荐合适的内容,减少因教育内容筛选产生的心智损耗,真正实现因材施教。四是教育环境亲和力提升。依托人工智能技术智能教学、智能服务、个性化辅导,支持多样化学习需求;基于关键词分析、社会网络分析等可以对思想政治教育全周期进行可视化分析,思想政治教育一体化智能教育环境逐步形成,从而提升了教育环境的亲和力。

3.推动思想政治教育精准化

思想政治教育创新的落脚点在于更好地培养人,要求推动思想政治教育精准化。一是对教育对象精准画像。思想政治教育创新的重要逻辑前提是对教育对象的精准画像,有的放矢,实现“靶向教育”。以往受限于技术,数据采集存在诸多不便,教育对象往往按照专业、年级等大而化之进行分类。而现在通过采集和分析学生党团活动参与、社交媒体使用、专业学习、就业创业、实习实训等行为产生的数据痕迹,可以对学生进行全样本、全过程、跟踪式的全维观照,从情感、态度、兴趣、价值观等多维度进行精准“画像”。二是精准追踪思想与行为。思想政治教育过程的基本范畴是思想与行为调适。人工智能驱动使海量数据的收集与相关性分析,密切追踪思想动态成为可能。以大数据挖掘和把握切入师生思想深处,分析其精微思想动态,使把握师生的思想动态与变化规律,透视师生的思想观念成为可能。同时,微观层面的智能考勤、智能批改、智能图书、智能餐盘、智能门禁,宏观层面的智慧课堂、智慧校园,使精细掌握师生行为动态具有了可能。三是精准透视思想与行为的差距。思想政治教育的成效在于促进思想境界的提升并外化为行为表现。以往通过静态的问卷进行表层的归纳,难以观照到思想与行为之间的差距。人工智能驱动下人们行为和喜好等各类丰沛的数据能够被收集利用,通过大数据收集,不仅能密切追踪师生思想行为轨迹,还能进行系统相关分析,由数据痕迹挖掘隐藏的思想动态,更为立体精准地透视思想与行为的差距。

二、人工智能驱动下思想政治教育创新的态势呈现

1.思想政治教育决策更具科学性

思想政治教育决策是为实现教育目标在多个可行性方案中作出判断并确定选择的过程。人工智能驱动下思想政治教育决策更具科学性。第一,由经验型决策转变为数据型决策。传统的思想政治教育决策方法有:专家研讨法、集体磋商法、经验判断法、系统分析法、试点方法。[3]各种方法的运用依靠的是教育者的个人经验对教育对象的思想行为进行判断以制订决策,而人工智能“利用大数据得以在全面坚实的经验基础上改善其决策的质量”。[4]第二,由封闭型决策转变为开放型决策。传统思想政治教育决策的依据是主体的经验和有限的数据,决策的过程是民主集中,决策的形式往往通过会议,相对封闭。而“人工智能算法可以根据数据信息进一步产生教育决策报告,从而更好地改善学校和地区的教育”。[5]人工智能技术将赋予教育管理信息系统新的功能,对学生、家长、用人单位、政府、社会等多维度的海量数据进行分析,从而助力学校和地区教育决策。第三,由滞后型决策转变为动态型决策。传统思想政治教育决策按照“目标锁定—方案制作—方案选择—实施调适”的决策流程进行,过程较为漫长,相应的数据收集均有时间间隔,方案调整也显滞后。伴随着移动终端的普及和5G技术迅速发展,数据反馈的即时性成为可能,实施过程调适呈现常态化,决策流程更显动态性。

2.思想政治教育管理更显有效性

思想政治教育管理是指对各要素进行有效配置以促成教育目标实现的过程。人工智能驱动下思想政治教育管理更显有效性。第一,管理者获享技术赋能。思想政治教育管理者如机构、组织及教师等得到人工智能技术赋能得以提升管理效率,实现数据共享、协同发力,如学校各级党组织可以通过各类党建及思想动态大数据平台,敏锐把握学生思想动态,确定教育方案。第二,管理对象得到个性关照。针对学生特定的家庭背景、成长环境、兴趣爱好和能力特长,人工智能驱动下,丰富的反馈数据流向教师和管理者。教师和管理者不再仅凭主观判断选择管理方式,大数据分析将协助管理者遴选最有效的甚至是“个性定制”的管理方式。依托人工智能技术赋能,规范管理的严格要求和个性管理的教育方式结合起来,能够使管理对象得到个性关照。第三,管理流程呈现可视化。思想政治教育管理流程包括确立目标、制订计划、完善机制、监督检查、总结激励等系统流程。借助机器参与管理,使管理流程数据化,将以往隐藏在幕后的管理流程变得可视化和清晰化。比如,构建校园安全应急管理智慧平台,贯通学生在校生活、管理、学习各种数据的“最后一公里”,通过对数据的集聚分析,探究各种因素之间的相关性,一旦突发安全事件,及时启动应急管理,并对应急管理流程及时调整。管理流程可视化将极大提升管理的时效度。

3.思想政治教育实施凸显精细化

思想政治教育实施包括思想政治理论课和日常思想政治教育的开展。依托智慧校园建设,借助“智能管理系统”、“一站式智能服务系统”、“个性化教育智能伴学平台”,高校可以打造良好的校内外数据链接以及校内数据闭环,围绕师生成长发展需要,增强供给能力,在思想政治理论课、心理健康教育等领域,提供高颗粒度的精细化服务。第一,思想政治理论课教学精细化。各种人工智能教学工具将助力教师从大量程序性、常规性任务中解放出来。思想政治理论课的学情分析、课堂设计、内容讲授、教学互动、成绩测评、作业批改等环节都将得到更为精细化地实施。教师借助人工智能教学工具,清晰掌握教学对象的知识水平、能力状况、价值倾向,在教学中调整重点难点,更有针对性地开展教学互动,实现定制化、跨学科教学网络视频资源、社会案例资源的在线供给,提升课堂讲授的效率和吸引力。利用VR、AR技术,可穿戴设备,建设虚拟仿真实验室,开展虚拟仿真实践教学。第二,心理健康教育精细化。通过构建学校心理健康教育智慧平台,形成教育教学、实践活动、咨询服务、预防干预的全周期、全流程、智能化的心理健康教育工作格局。通过心理健康智慧平台,分析学生心理测评普查数据,不断提高心理健康素质测评的全员性和科学性,提升心理危机预防干预的有效性。依托智能平台,实现数据流贯通,搭建学校、院系、班级、宿舍四级预警防控智能体系。

4.思想政治教育评估提升实效性

评估是确定思想政治教育实际效果的关键环节,是对于目标是否达成、内容是否合适、方法是否适切、互动是否有效的全方位评判和估量。科学评估有利于受教育者获得感提升,有利于教育者及时调整教育方案,避免教育资源浪费。第一,保障及时性评估。依托计算机视觉、自然语言处理、机器学习等技术,可以构建思想状态预测模型,为及时评估提供保障。基于相关行为数据实时测量情绪动态和心理动态,分析思想状态,从而有针对性地调整思想政治教育方案。依托自适应学习系统、辅学机器人,分析课堂行为、教学数据,对于教师的教学方式、教学语言表达、教学节奏及时进行评估,帮助教师及时调整教学方案,提升教学质量。第二,支持过程性评估。人工智能通过大数据收集,使教育过程数据都得以留存,从而支持过程性评估。过程性评估将评估嵌入学生接受思想政治教育的全过程,需要强大的算力算法支撑和数据收集、储存、筛选能力。智能机器能够“不眠不休”地持续进行数据收集和模型分析,使过程性评估得以实现。通过对学生接受思想政治教育课程、活动前后的思想动态、情绪表征进行相关性分析、可视化对比,开展诊断性、发展性和引导性的评估。第三,推动全面性评估。全员、全过程、全方位育人,需要推动全面评估来牵引带动。以往受限于技术,思想政治教育往往停留于知识层面的评估。依托强大算力支持和算法设计,面向教育对象的全员、全过程、全方位数据留存和痕迹保留,发现全面数据背后的相关性,推动全面性评估。

三、人工智能驱动下思想政治教育创新面临的问题与挑战

思想政治教育创新的本质是通过推进理念思路、内容形式、方法手段创新,培养社会主义建设者和接班人。人工智能驱动下的思想政治教育创新,其本质只能得到加强,而不能被削弱。但人工智能也使思想政治教育创新面临诸多问题和挑战。

1.数字鸿沟

“数字鸿沟”是指因对人工智能技术的拥有、运用程度的差别而造成的信息落差及贫富两极分化的趋势。少部分精英群体掌握人工智能技术,成为资源的垄断者。思想政治教育创新面临数字鸿沟挑战,具体而言包括两方面;第一,应对人工智能带来的教育不公。数字鸿沟会加剧现有的不平等和分歧。边缘化和贫穷人口更有可能被排除在人工智能教育之外,产生一种恶性循环。如何缩小人工智能所带来的日益加剧的数字鸿沟,以促进公平性和全纳性,是教育面临的重大挑战。思想政治教育也应该将全纳和公平作为重要理念,融入人才培养全过程,着眼于普遍提升学生数据素养。通过全体学生数据素养的提升,理解大数据,善于收集分析并运用大数据,遵循大数据使用伦理,应对数字鸿沟挑战。第二,应对“机器换人”带来的就业机会被剥夺。思想政治教育创新应对就业机会被剥夺的问题,根本在于提升抵御机器的能力。未来能被机器取代的能力主要表现为“确定性、完全、静态的、单任务和有限领域”的五种形态,解决“规则十分明确的、定义十分清晰的任务”的能力。[6]人工智能在创新创造、领导能力、同理心、协作和沟通等软技能方面仍然薄弱,涉及非结构化任务的工作对于人工智能来说很难,不容易被替代。思想政治教育需不断提升学生的创新性思维能力、批判性思维能力、沟通合作能力、自我发展和管理能力。

2.隐私侵犯

思想政治教育工作者在利用语音识别、图像识别、人机对话等功能,分析学生家庭经济状况,记录学生学习、生活和行为数据,综合分析学生思想动态,为学生提供个性化教育管理服务的过程中,学生的隐私权有可能被侵犯。思想政治教育创新既要充分利用人工智能技术,又需要积极应对隐私侵犯的挑战。一是牢固树立隐私保护理念。“任何人要在教育规划中应用大数据,取得学生和家长对其教育数据可被分析的信任是至关重要的。”[7]二是推动建立隐私保护制度。加强对人工智能运用于思想政治教育的潜在风险研判,确保人工智能安全、可靠、可控。积极探索人工智能驱动思想政治教育的制度解决方案和治理模式,对于师生大数据的源头抓取、相关分析、实际运用设立严格的规章制度,以保护师生隐私。三是将隐私保护作为思想政治教育考核评价的重要指标。思想政治教育考核评价体系是创新的重要推动力。隐私保护作为考核评价的重要指标,将隐私保护的技术规范、科学举措、实际成效纳入年终考核评价,推动隐私保护的持续改进。

3.刻板效应

当机器越来越智能,对学生思想行为的预测越来越精准,就会反过来形成一种刻板效应;完全依据过往的数据来预测教育对象,而忽视教育对象改变的可能性。刻板效应忽视了教育的塑造、发展功能,完全依赖过去的数据来判断未来生成,以所谓“私人定制”实则只是过往的“自我延伸”而忽视“发展可能”,必然导致一部分人成为人工智能驱动的受害者而非受益者。应对刻板效应的挑战,需要从两方面着力;一方面,谨慎使用过往数据。“对过往数据的永久留存,以及可能不公正决定我们的命运并剥夺我们未来的概率预测。它们将对人的隐私和自由造成深远的影响。”[8]需要谨慎对待过往数据,审慎判断过往信息数据与现在学生思想政治素质的关联。另一方面,限定人工智能技术使用的边界。人工智能技术在思想政治教育中的使用需要严格限定边界。人工智能不能成为记录学生行为习惯,掌握学生全周期活动轨迹和信息,诱导学生形成表演型人格的监控工具。智能评价系统的单一评价需要与教育者的日常观察、谈心谈话等方法紧密结合,强调教育者在学生教育、评价中的作用。

四、人工智能驱动下思想政治教育创新的实践策略

1.强化人工智能发展的价值引领

人工智能不是在脱离人类社会的真空中产生和运行的,而是深深植根于社会现实。主流价值导向是人工智能的“方向盘”,需要不断强化人工智能发展的价值引领。第一,为人工智能从业者进行价值观引领。高校是人工智能技术发展的前沿阵地,高校师生是人工智能从业者(包括开发者、创业者、政策制定者)的主力军。思想政治教育应该面向高校师生,尤其是人工智能相关专业的师生,对他们进行社会主义核心价值观教育。同时要求人工智能应用程序应促进包容和平等,推进全纳性人工智能应用,帮助每个人享有公平、适切且优质的终身学习机会。第二,人工智能驱动思想政治教育创新必须坚持正确的政治方向。人工智能驱动思想政治教育创新过程,需要依据社会主义伦理、法律、政治等主流价值规则确立基本算法,全面落实立德树人根本任务,利用人工智能推动人才培养模式变革,使大学生坚定“四个自信”,防止人工智能发展失去政治方向,使人陷入认识偏执、隐私泄露、信息茧房等问题。第三,人工智能驱动思想政治教育创新要凸显发展性。“人工智能时代,学习或教育本身不是目的,我们真正的目的是让每个人在技术的帮助下,获得最大的自由,体现最大的价值,并从中得到幸福。”[9]人工智能为社会转型带来了新的曙光,相对于其他教育体系来说,思想政治教育体系更需要超前部署、未雨绸缪,通过智慧的教育培养智慧的人,巩固教育者的主体地位,充分发掘生命的内在潜质,在人与机器人共舞的时代充当领舞者。

2.推进思想政治教育与人工智能学科交叉融合

人工智能驱动思想政治教育创新必须遵循学生成长成才规律、智能教育规律,需要跨学科协同探索,推进思想政治教育与人工智能学科交叉融合。一是强化马克思主义理论学科的引领作用。人工智能驱动并未在本质上消解马克思主义理论,相反在看似创新突变的技术背后,更需马克思主义理论澄清智能时代思想政治教育的现象与本质、内容与形式、偶然与必然,推进智能时代思想政治教育学科建设,以学科建设来不断推进智能型人才培养。二是强化思想政治教育学科与人工智能等学科交融渗透。人工智能驱动思想政治教育创新涉及复杂而又庞大的推理和决策系统,既要融合计算机科学和统计学的技术及理论,又要融合教育学、学习科学、心理学、脑科学、认知神经科学等的成果,不断推进“人工智能+思想政治教育”交叉学科的建设。在人工智能学科建设注入人文关怀,就人工智能伦理形成共识,时刻坚持将人工智能造福于人类作为首要原则。在思想政治教育学科建设中,真正推进人工智能技术的运用。人工智能驱动的思想政治教育应围绕人的发展展开探索,而非在技术的绑架下追求教育的“智能化”。

3.提升思想政治教育师资队伍智能素养

人工智能素养主要是指具备理解人工智能的运作方式,并能与人工智能协作的知识、技能、情感、态度、价值观等素养的综合。思想政治教育教师具备人工智能素养,才能了解人工智能如何改善思想政治教育,掌握数据分析技能,善于对数据进行收集、挖掘、分析、处理,并能够批判性地看待人工智能的影响方式,致力于培养学生不被机器取代的能力,提高学生理解、运用人工智能的能力。首先,强化培训培养。学校要不断推进智能校园建设,加大对智能校园软硬件建设的投入,真正重视教师智能素养提升,形成思想政治教育工作者智能素养提升的长效机制。定期举办面向思想政治理论课教师、党务干部、辅导员、班主任、心理健康教育教师等的智能素养提升专题培训班,针对数据驱动、共创分享、人机协同等进行模块化的精细培训,邀请人工智能领域的专家和业务精湛的思想政治教育工作者就智能素养提升进行讲解。鉴于国外智能教育学科较为成熟,还可以鼓励思想政治教育工作者参加海外研修,扩大国际交流,以国际化视野进一步提升智能素养。其次,强化考核评价。以考核评价为牵引,激励教师智能素养提升的主动性。将智能素养提升纳入师资队伍年度考核和职称晋升、职务竞聘环节。对于智能素养较高的教师要进行奖励,选树人机协同的典型。各主管部门及高校要为教师智能素养提升提供科研平台,设立专项课题,鼓励教师开展智能素养提升方面的研究。搭建交流平台,不断提炼教师智能教育经验,形成智能教育的示范案例。再次,鼓励思想政治教育工作者开设人工智能相关课程,在智能思想政治教育领域实现专业化、专家化发展。

4.构建人工智能驱动思想政治教育创新多方协同

思想政治教育创新既涉及思想政治理论课教学全过程,也涉及思想政治工作管理、服务全环节,贯通学校、家庭、社会、政府的各体系。人工智能驱动思想政治教育创新多方协同策略,体现在三方面:第一,学校与学校协同,促成智慧校园数据共享。人工智能驱动思想政治教育创新是基于师生思想行为的信息与痕迹,从中提取有效的内容纳入思想政治教育系统设计。通过智慧校园的数据共享,各学校之间协同,可以在就业创业、心理健康教育、实践育人等领域的课程资源、师资建设、案例积累等方面形成数据共享,产生协同效应。第二,学校与地方协同,与智慧城市建设相衔接。无论是学生的精准资助、志愿服务,还是实践育人的稳步推进,都需要借助智慧城市的数据共享,从而提升思想政治教育的实效。以精准资助为例,要借助智慧城市社会保障和脱贫攻坚数据,形成大学生家庭经济困难指数,从而开展精准资助。通过与智慧城市建设相衔接,思想政治教育的数据支撑、资源整合由校内延伸至校外。第三,学校与人工智能企业相协同,推动智能教育发展。思想政治教育利用人工智能驱动来进行创新,需尊重大学生用户体验。各种智能技术的使用,必然不是标准化、模板化的,而应结合校情来进行智能定制。因此,需要与人工智能企业深度协同,从而将现有商用人工智能技术安全精细化地融入思想政治教育环节中。

参考文献:

上一篇: 人工智能应用领域的研究与展望
下一篇: 有哪些适合高中生的课题研究?

为您推荐

发表评论