当前位置:网站首页 > 探索 > 圆周率是谁发现的

圆周率是谁发现的

圆周率是谁发现的圆周率是谁发现的

圆周率是谁发现的纠正一下,圆周率并不是祖冲之发现的,他之前,刘徽就就计算过圆周率.

作为数学家,研究计算圆周率应该是他们的专业方向之一.

国古代数学家对圆周率方面的研究工作,成绩是突出的。早在三国时期,著名数学家刘徽就用割圆术将圆周率精确到小数点后3位,南北朝时期的祖冲之在刘徽研究的基础上,将圆周率精确到了小数点后7位,这一成就比欧洲人要早一千多年。

祖冲之是和他儿子一起从事这项研究工作的,当时条件很差。他们在一间大屋的地上画了一个直径1丈的大圆。从内接正6边形开始计算,12边形,24边形,48边形的翻翻,一直算到96边形,计算的结果和刘徽的一样。接着,内接边数再逐次翻翻,边数每翻一次,要进行7次加减运算,2次乘方,2次开方,运算的数字都很大,很复杂,在当时的条件下,是十分困难的。祖冲之父子一直把边形算到24576边,得出了圆周率在3·1415926和3·1415927之间,精确到了小数点后7位。其近似分数是355/113,被称为"密率"。德国数学家奥托在1573年重新得出这个近似分数。当时,欧洲人还不知道在一千多年之前祖冲之就己经算出来了。后来荷兰人安托尼兹也算出这个近似分数,于是欧洲人就把这个称为"密率"的近似分数叫着"安托尼兹率"。日本数学家认为应该恢复其本来面目,肯定祖冲之在圆周率方面研究的贡献,改称"祖率"才对。没有史书记载是谁发现圆周率的。

圆周率最早见于文字记载的有基督教《圣经》中的章节,其上取圆周率为3。这一段描述的事大约发生在公元前950年前后。在我国东汉时期官方还明文规定圆周率取3为计算面积的标准。后人称之为“古率”。

在我国,首先是由数学家刘徽得出较精确的圆周率。公元263年前后,刘徽提出著名的割圆术,得出π=3.14,通常称为“徽率”。

恐怕大家更加熟悉的是祖冲之所做出的贡献吧。对此,《隋书·律历志》有如下记载:“宋末,南徐州从事祖冲之更开密法。以圆径一亿为丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒二限之间。密率:圆径一百一十三,圆周三百五十五。约率,圆径七,周二十二。”

这一记录指出,祖冲之关于圆周率的两大贡献。其一是求得圆周率

3.1415926<π<3.1415927

其二是,得到π的两个近似分数即:约率为22/7;密率为355/113。

他算出的π的8位可靠数字,不但在当时是最精密的圆周率,而且保持世界记录九百多年。以致于有数学史家提议将这一结果命名为“祖率”。

这一结果是如何获得的呢?追根溯源,正是基于对刘徽割圆术的继承与发展,祖冲之才能得到这一非凡的成果。因而当我们称颂祖冲之的功绩时,不要忘记他的成就的取得是因为他站在数学伟人刘徽的肩膀上的缘故。圆周率是"祖冲之''发现的.西汉末年,刘歆(约分元前50年到公元23年)定圆周率为3.1547,到了东汉时代,张衡(公元78-139年)求得两个比,一是9229=3.17241…,另一个是10,约等于3.1622.(印度数学家罗笈多也曾定圆周率为10,但已迟于张衡500多年.)

到了三国时,魏人刘徽(公元263年)创立了求圆周率的准确值的原理,他用割圆术求得圆周率的前三位数字是π≈3.14…,称为徽率.

到南北朝时代的祖冲之(公元429年—500年),他已推算出

3.1415926<π<3.1415927.

也就是π≈3.1415926…,他是世界上第一个确定圆周率准确到7位小数的人.祖冲之又提出了用两个分数表示π的近似值.即227及355113,分别称为π的约率和密度.

在祖冲之发现密率一千多年后,欧洲的安托尼兹(16世纪~17世纪)才重新发现了这个值.西汉末年,刘歆(约分元前50年到公元23年)定圆周率为3.1547,到了东汉时代,张衡(公元78-139年)求得两个比,一是9229=3.17241…,另一个是10,约等于3.1622.(印度数学家罗笈多也曾定圆周率为10,但已迟于张衡500多年.)

到了三国时,魏人刘徽(公元263年)创立了求圆周率的准确值的原理,他用割圆术求得圆周率的前三位数字是π≈3.14…,称为徽率.

到南北朝时代的祖冲之(公元429年—500年),他已推算出

3.1415926<π<3.1415927.

也就是π≈3.1415926…,他是世界上第一个确定圆周率准确到7位小数的人.祖冲之又提出了用两个分数表示π的近似值.即227及355113,分别称为π的约率和密度.

在祖冲之发现密率一千多年后,欧洲的安托尼兹(16世纪~17世纪)才重新发现了这个值.

上一篇: 飞天的梦想:人类探索宇宙的历程
下一篇: 森之国度探索坐标大全:各地图猫咪/罐子/拍照位置分布汇总

为您推荐

发表评论