今日推送The R Journal 2016/12/12发布的文章:《diverse: an R Package to Analyze Diversity in Complex Systems》,作者是Miguel R. Guevara, Dominik Hartmann and Marcelo Mendoza。(The R Journal(2016) 8:2, pages 60-78)
摘要:diverse拓展包提供了一个易于使用的方法以对复杂系统中多样性的不同方面进行计算与可视化分析。近年来,越来越多的社会学及其跨学科的研究项目强调在社会经济系统中多样化和复杂性所扮演的角色,其涉及的领域包括了创新研究,科学计量学、经济学和网络科学等。然而,迄今为止并没有专业的拓展包来满足这些新兴领域和跨学科团队研究的需求。大多数关于多样性的软件包也都是根据自然科学和生物科学等特定领域的需求和术语创建。而和许多科学领域有关,本文diverse拓展包综合了各学科间的多样性概念,例如差距、平衡,以及普遍性和显示性比较优势,对社会经济系统中多样性的交叉学科研究特别有用。diverse拓展包为社会科学家、交叉学科研究人员和生态学初学者提供了一个工具箱,用以(i)导入数据.(ii)计算不同的数据变换和归一化.(iii)不同维度多样性的衡量方法.(iv)结合将diverse包和其他专业R包用以进行相似性衡量,数据可视化和统计显著性检验。从矩阵导入和转换功能、相似性和多样性衡量,到数据可视化方法,该包的全面性足以使它成为探索复杂系统多维度下多样性的有效package。
文章图示:
Abstract: The package diverse provides an easy-to-use interface to calculate and visualize different aspects of diversity in complex systems。 In recent years, an increasing number of research projects in social and interdisciplinary sciences, including fields like innovation studies, scientometrics, economics, and network science have emphasized the role of diversification and sophistication of socioeconomic systems。 However, so far no dedicated package exists that covers the needs of these emerging fields and interdisciplinary teams。
Most packages about diversity tend to be created according to the demands and terminology of particular areas of natural and biological sciences。 The package diverse uses interdisciplinary concepts of diversity—like variety, disparity and balance— as well as ubiquity and revealed comparative advantages, that are relevant to many fields of science, but are in particular useful for interdisciplinary research on diversity in socioeconomic systems。 The package diverse provides a toolkit for social scientists, interdisciplinary researcher, and beginners in ecology to (i) import data, (ii) calculate different data transformations and normalization like revealed comparative advantages, (iii) calculate different diversity measures, and (iv) connect diverse to other specialized R packages on similarity measures, data visualization techniques, and statistical significance tests。
The comprehensiveness of the package, from matrix import and transformations options, over similarity and diversity measures, to data visualization methods, makes it a useful package to explore different dimensions of diversity in complex systems。
李建成,中山大学管理学院博士研究生。
能力所限,不尽正确,诸君不吝勉励勘正,深表谢意。
欢迎交流和讨论,如需联系作者,请发送邮件至:lijiancheng0813@gmail.com。
本公众号本着包容、平等、相互学习与交流的精神,传播知识与经济学术思想,以求共同进步。
欢迎赐稿,来搞标注作者信息与文章说明,发送至:lijiancheng0813@gmail.com。
更多内容请点击左下方获取论文原文。
发表评论